Part Number Hot Search : 
SLA4071 AM7204A CG2300 MAX10 S29GL12 T54ACS CA3146E UDN2993B
Product Description
Full Text Search
 

To Download AMGP-6434 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  AMGP-6434 28-31 ghz 4w smt packaged power amplifer data sheet description the AMGP-6434 is a surface mount packaged 4-watt power amplifer that operates?from frequencies between 28 to 31 ghz.?in the operational frequency band from 29.5 to 30 ghz, it provides 35.5 dbm of typical output power (p 1db )/36 dbm p sat and 19 db of small-signal gain.?this pa is also suitable for high linear application where the pa demonstrates greater than than -40 dbc of third order output inter modulation (oim3) at +20 dbm/tone output power level. functional block diagram features ? 5 x 5 mm surface mount package ? high +36 dbm output power from 28 to 31 ghz ? 50 input and output match ? -40 c to +85 c operation applications ? vsat ? microwave radio system ? satellite up/down link note: this part is not rated for high-moisture environments. package diagram attention: observe precautions for handling electrostatic sensitive devices. esd machine model (class a): 50 v esd human body model (class 1a): 250 v refer to avago application note a004r: electrostatic discharge damage and control. pin function 1 vg 2 vd1 3 vd2 4 rf_out 5 vd2 6 vd1 7 vg 8 rf_in 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 rf_in rf_out vg vd1 vd2 vd2 vd1 vg
2 electrical specifications table 1. absolute minimum and maximum [1] ratings parameter specifcations comments description pin min. max. unit drain supply voltage v d1 v d2 6.5 v gate supply voltage v g -2 0 v rf input power (p in ) [2] rfin 24 dbm cw power dissipation (p diss ) 20 w p diss = v d1 x i d1 + v d2 x i d2 + p in - p out msl msl2 t ch 150 c channel temperature t stg -65 150 c storage temperature notes: 1. operation of this device above any one of these maximum parameters may cause permanent damage 2. with the dc (typical bias) and rf applied to the device at board temperature t b = 25 c table 2. recommended operating range parameter specifcations comments description pin min. typical max. unit drain supply voltage v d1 v d2 6.0 v gate supply voltage v g -1 -0.68 -0.35 v gate current @ 17dbm pin ig 1.2 ma gate current @ ss [-20dbm pin] ig 650 ua quiescent drain supply current (i dq ) v d1 v d2 600 800 ma i dq = i d1 + i d2 rf output power (p out ) rfout 36 dbm cw frequency range 28 31 ghz thermal resistance, ch-b 4.5 c/w channel to board base plate temperature -40 +85 c
3 electrical specifcations all data measured on a 2.4 mm connectorized production contactor board (rogers 4350b) at v dd1 = v dd2 = 6 v, i dd = 3 a (i dd1 + i dd2 ), t c = 25 c, and 50 at all ports unless otherwise stated table 3. rf electrical characteristics parameter performance comments min. typical max. unit frequency range (ghz) 28 31 ghz input return loss (db) -8 db small signal output return loss (db) -10 db small signal gain (db) [1] @ freq = 29.5 ghz (p in = -20 dbm) @ freq = 30 ghz 21 21 23.3 22.1 27 27 db v dd = 6 v, i dd = 3 a v dd = 6 v, i dd = 3 a reverse isolation (db) -40 db small signal p out [1] (p in = 17 dbm) @ freq = 29.5 ghz @ freq = 30 ghz 35.25 35.25 37.3 36.1 dbm v dd = 6v , i dd = 3 a v dd = 6 v, i dd = 3 a p 1db @ freq = 29.5 ghz @ freq = 30 ghz 35.8 35.3 dbm v dd = 6 v, i dq = 1.4 a v dd = 6 v, i dq = 1.4 a im3 level -40 dbc f = 20 mhz, p out = 20 dbm/tone total drain current 3 a i dd note: 1. p out and gain measurement accuracy is subjected to the tolerance of 0.5 dbm respectively.
4 product consistency distribution charts at 29.5 ghz and 30 ghz, v dd = 6 v, i dq = 3 a p out @ 29.5 ghz (p in = 17 dbm), mean = 36.83 dbm, lsl = 35.25 dbm, usl = 38.5 dbm gain @ 29.5 ghz (p in = -20 dbm), mean = 23.37 db, lsl = 21 db, usl = 27 db gain @ 30 ghz (p in = -20 dbm), mean = 22.09 db , lsl = 21 db, usl = 27 db v g @ v dd = 6 v, i dq = 3 a (p in = 17 dbm), mean = -0.68 v, lsl = -1 v, usl = -0.1 v p out @ 30 ghz (p in = 17 dbm), mean = 36.51 dbm, lsl = 35.25 dbm, usl = 38.5 dbm v g @ v dd = 6 v, i dq = 3 a (p in = -20 dbm), mean = -0.42 v, lsl = -1 v, usl = -0.1 v -1 -0.9 -0.7 -0.5 -0.3 -0.1 0 -1 -0.9 -0.7 -0.5 -0.3 -0.1 lsl usl lsl usl 35 35.5 36.5 36 37.5 37 38.5 38 35 35.5 36.5 36 37.5 37 38.5 38 lsl usl lsl usl 20 21 22 23 24 25 26 27 28 lsl usl 20 21 22 23 24 25 26 27 28 lsl usl
5 selected performance plots all data measured on a 2.4 mm connector based evaluation board at v dd1 = v dd2 = 6 v, i dq = 1.4 a (i d1 + i d2 ), t a = 25 c, and 50 at all ports. figure 1. s 21 (db) frequency sweep figure 2. s 11 (db) frequency sweep figure 3. s 22 (db) frequency sweep figure 4. s 12 (db) frequency sweep figure 5. p 1db (dbm) frequency sweep figure 6. im3 level (dbc) vs. output power/tone im3 (28 ghz) im3 (29 ghz) im3 (29.5 ghz) im3 (30 ghz) im3 (31 ghz) 10 11 12 13 14 15 16 17 18 19 20 21 25 26 27 28 29 30 31 32 33 34 35 frequency [ghz] s21 [db] -25 -20 -15 -10 -5 0 25 26 27 28 29 30 31 32 33 34 35 frequency [ghz] s22 [db] -80 -70 -60 -50 -40 -30 -20 -10 0 25 26 27 28 29 30 31 32 33 34 35 frequency [ghz] s12 [db] 35 35.2 35.4 35.6 35.8 36 36.2 36.4 36.6 36.8 37 28 28.5 29 29.5 30 30.5 31 frequency [ghz] p-1 [dbm] -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 10 12 14 16 18 20 22 24 26 28 30 pout [dbm] im3 level [dbc] -25 -20 -15 -10 -5 0 25 26 27 28 29 30 31 32 33 34 35 frequency [ghz] s11 [db]
6 selected performance plots over operating temperature range all data measured on a 2.4 mm connector based evaluation board at v dd1 = v dd2 = 6 v, i dq = 1.4 a (i d1 + i d2 ), and 50 at all ports. idg has been maintained at 1.4 a under diferent temperature conditions. figure 7. s 21 (db) frequency sweep over temperature figure 8. s 11 (db) frequency sweep over temperature figure 9. s 22 (db) frequency sweep over temperature figure 10. typical v gs for i dq = 1.4 a over temperature figure 11. p -1 (dbm) frequency sweep over temperature figure 12. oip3(dbm) and im3 level (dbm) frequency sweep over temperature @ po = 20 dbm/tone oip3 -40 c oip3 25 c oip3 85 c im3 -40 c im3 25 c im3 85 c -40 c 25 c 85 c -40 c 25 c 85 c 0 5 10 15 20 25 25 26 27 28 29 30 31 32 33 34 35 frequency [ghz] s21 [db] -25 -20 -15 -10 -5 0 25 26 27 28 29 30 31 32 33 34 35 frequency [ghz] s22 [db] 25 26 27 28 29 30 31 32 33 34 35 frequency [ghz] -25 -20 -15 -10 -5 0 s11 [db] -0.82 -0.81 -0.80 -0.79 -0.78 -0.77 -0.76 -0.75 -0.74 -60 -40 -20 0 20 40 60 80 100 temperature [c] vgs [v] 30 31 32 33 34 35 36 37 38 28 28.5 29 29.5 30 30.5 31 frequency [ghz] p-1 [dbm] 0 5 10 15 20 25 30 35 40 45 28 28.5 29 29.5 30 30.5 31 frequency [ghz] oip3 [dbm] -45 -40 -35 -30 -25 -20 -15 -10 -5 0 im3 level [dbm] -40 c 25 c 85 c -40 c 25 c 85 c
7 selected performance plots over operating supply voltage range all data measured on a 2.4 mm connector based evaluation board at t a = 25 c, and 50 at all ports. figure 13. s 21 (db) frequency sweep figure 14. s 11 (db) frequency sweep figure 15. s 22 (db) frequency sweep figure 16. p 1db (dbm) frequency sweep figure 17. p 3db (dbm) frequency sweep figure 18. oip3 and im3 level vs. frequency sweep @ po = 20 dbm/tone oip3 5 v oip3 6 v oip3 6.5 v im3 5 v im3 6 v im3 6.5 v 5 v 1700 ma 6 v 1400 ma 6.5 v 1300 ma 5 v 1700 ma 6 v 1400 ma 6.5 v 1300 ma p-1, 5 v p-1, 6 v p-1, 6.5 v -25 -20 -15 -10 -5 0 25 26 27 28 29 30 31 32 33 34 35 frequency [ghz] s11 [db] 0 5 10 15 20 25 25 26 27 28 29 30 31 32 33 34 35 frequency [ghz] s21 [db] 30 31 32 33 34 35 36 37 38 39 40 28 28.5 29 29.5 30 30.5 31 31.5 32 frequency [ghz] p-1 [dbm] -25 -20 -15 -10 -5 0 25 27 29 31 33 35 frequency [ghz] s22 [db] 30 31 32 33 34 35 36 37 38 39 40 28 28.5 29 29.5 30 30.5 31 31.5 32 frequency [ghz] p-3 [dbm] 0 5 10 15 20 25 30 35 40 45 28 28.5 29 29.5 30 30.5 31 frequency [ghz] oip3 [dbm] -45 -40 -35 -30 -25 -20 -15 -10 -5 0 im3 level [dbm] 5 v 1700 ma 6 v 1400 ma 6.5 v 1300 ma p-1, 5 v p-1, 6 v p-1, 6.5 v
8 bias sequence: ? apply vg = -1.5v ? apply vdd = 0v ? increase vdd to 6v ? increase vg to obtain idsq = 1.4a ? apply rf ? turn of in reverse order table 5. recommended passive components ref designator value part number c1-c4 22 m f tdk c1608x5r0j226m digikey 445-8028-1-nd c5-c10 0.1 m f 0402 any l1, l2 ferrite bead murata blm18hg471sn1 r1-r6 10 w 0402 any r7, r8 47 0402 any table 4. pin description pin no. function 1 vg 2 vd1 3 vd2 4 rf_out 5 vd2 6 vd1 7 vg 8 rf_in demo-board table 3. typical test conditions: pin vd1, 2 6v drain supply voltage idsq=id1+id2 1400ma quiescent drain current vg -0.79 gate supply voltage application circuit figure 19. application circuit figure 20. demo-board vd2 vd1 vg vd2 vd1 vg 0.1uf 22uf 22uf 10r 0.1uf 10r 0.1uf 10r 0.1uf 10r 0.1uf 47r 0.1uf 47r ferrite bead ferrite bead vd vg 10r 22uf amgp 6434 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 c 1 0 r 1 r 2 r 3 r 4 r 5 r 6 r 7 r 8 l 1 l 2 gnd vg nc vdd nc gnd gnd vg nc vdd nc gnd 1 2 3 7 6 5 4 8
for product information and a complete list of distributors, please go to our web site: www.avagotech.com avago, avago technologies, and the a logo are trademarks of avago technologies in the united states and other countries. data subject to change. copyright ? 2005-2013 avago technologies. all rights reserved. av02-3204en - september 24, 2013 package dimension, pcb layout and tape and reel information please refer to avago technologies application note 5521, amxp-xxxx production assembly process (land pattern b). part number ordering information part number devices per container container AMGP-6434-blkg 10 antistatic bag AMGP-6434-tr1g 100 7 reel AMGP-6434-tr2g 500 7 reel reliability data please contact avago technical and/or customer supports for more detail www.avagotech.com


▲Up To Search▲   

 
Price & Availability of AMGP-6434

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X